Global Well-Posedness and Stability of Electrokinetic Flows
نویسندگان
چکیده
We consider a coupled system of Navier-Stokes and Nernst-Planck equations, describing the evolution of the velocity and the concentration fields of dissolved constituents in an electrolyte solution. Motivated by recent applications in the field of microand nanofluidics, we consider the model in such generality that electrokinetic flows are included. This prohibits employing the assumption of electroneutrality of the total solution, which is a common approach in the mathematical literature in order to determine the electrical potential. Therefore we complement the system of mass and momentum balances with a Poisson equation for the electrostatic potential, with the charge density stemming from the concentrations of the ionic species. For the resulting Navier-Stokes-Nernst-Planck-Poisson system we prove the existence of unique local strong solutions in bounded domains in R for any n ≥ 2 as well as the existence of unique global strong solutions and exponential convergence to uniquely determined steady states in two dimensions.
منابع مشابه
Investigation of electrokinetic mixing in 3D non-homogenous microchannels
A numerical study of 3D electrokinetic flows through micromixers was performed. The micromixers considered here consisted of heterogeneous rectangular microchannels with prescribed patterns of zeta-potential at their walls. Numerical simulation of electroosmotic flows within heterogeneous channels requires solution of the Navier-Stokes, Ernest-Plank and species concentration equations. It is kn...
متن کاملHadamard Well-posedness for a Family of Mixed Variational Inequalities and Inclusion Problems
In this paper, the concepts of well-posednesses and Hadamard well-posedness for a family of mixed variational inequalities are studied. Also, some metric characterizations of them are presented and some relations between well-posedness and Hadamard well-posedness of a family of mixed variational inequalities is studied. Finally, a relation between well-posedness for the family of mixed variatio...
متن کاملCOUPLED FIXED POINT THEOREMS FOR RATIONAL TYPE CONTRACTIONS VIA C-CLASS FUNCTIONS
In this paper, by using C-class functions, we will present a coupled xed problem in b-metric space for the single-valued operators satisfying a generalized contraction condition. First part of the paper is related to some xed point theorems, the second part presents the uniqueness and existence for the solution of the coupled xed point problem and in the third part we...
متن کاملForeign Trade and International Financial Flows: Implications for Economic Stability in the Selected ECOWAS Countries
T his study investigates the effects of extra-ECOWAS merchandise trade and investment flows on the transmission of business cycles in the selected ECOWAS between 1985 and 2014. The study finds that total trade and foreign direct investment (FDI) significantly influence the transmission of business cycles with elasticities of 1.1 and 0.7, respectively in the long run. There are little vari...
متن کاملGlobal well-posedness for the Schrödinger equation coupled to a nonlinear oscillator
The Schrödinger equation with the nonlinearity concentrated at a single point proves to be an interesting and important model for the analysis of long-time behavior of solutions, such as the asymptotic stability of solitary waves and properties of weak global attractors. In this note, we prove global well-posedness of this system in the energy space H1.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 46 شماره
صفحات -
تاریخ انتشار 2014